Asset Liability Management in der Lebensversicherung

Management langfristiger Zinsgarantien im Niedrigzinsumfeld

DAV vor Ort im q_x-Club Köln 14.04.2015

> Mario Müller AXA Konzern AG

- 1. ALM im Versicherungsunternehmen
- 2. Stochastische ALM Analysen
- Management langfristiger Zinsgarantien
- 4. Fazit

1

ALM im Versicherungsunternehmen

Definition ALM

Asset-Liability-Management (Bilanzstrukturmanagement, Aktiv-Passiv-Steuerung)

"... alle auf die Zukunft ausgerichteten Techniken und Methoden, die Aktiva und Passiva simultan betrachten.

Ziel des Asset-Liability-Managements ist es, eine Informationsgrundlage für Entscheidungen zu schaffen . . . "

(Jaquemod, 2005)

Basisziele ALM

Basisziele des Asset-Liability-Managements sind:

- Management der finanziellen Stabilität durch Steuerung der Risiken
- Management der Profitabilität durch Optimierung des Risiko-Rendite-Profils

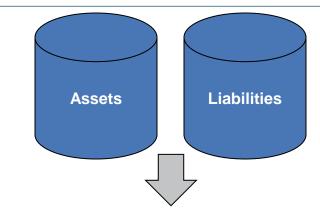
Risiko Rendite

ALM ist nicht das Bestreben die Finanzrisiken zu eliminieren. Ziel ist die bewusste Steuerung von Chancen und Risiken.

Aufgaben und Schnittstellen ALM bei AXA

14.04.2015

2 Stochastische ALM Analysen



ALM Prozess

externe Annahmen (Umwelt):

- Ausscheideordnungen (Leben): Tod, (dynamisches) Storno, Kapitalwahl ...
- Schadenzahlungen (P&C)
- Medizinische Inflation (Health)
- Kosten
- Kapitalmarktmodelle, ...

DFA Modell

Auswertung

interne Annahmen (Geschäftspolitik):

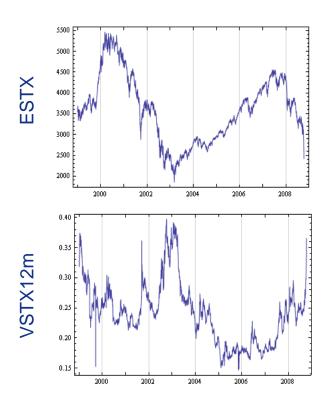
- Neugeschäftsannahmen
- · Investment- und Durationsstrategien
- Dividenden- / Verzinsungsziele
- Überschusspolitik

Projektion:

- Bilanz
- GuV
- Solvabilität
- Dividenden
- · Markt- und Buchwerte
- Stille Reserven

Ökonomische Szenarien

- Ein wesentlicher Input für eine ALM Analyse sind die stochastischen Szenarien.
- Abhängig von der gegebenen Aufgabenstellung sind verschiedene Anforderungen an die verwendeten Szenarien zu stellen.


Modellierung der folgenden Assetklassen bzw. Risikofaktoren sollte abgedeckt sein:

- Nominale Zinsstrukturkurve
- Break Even Inflationkurve
- Aktien
- Immobilien
- Unternehmensanleihen (stochastischer Ausfall- und Migrationsprozess)

Die verwendeten Modelle sollten arbitragefrei ("no free lunch") sein und sowohl Szenarien für die Bewertung (risikoneutral) als auch für eine Risikoanalyse (Real-World-Wahrscheinlichkeiten) liefern können.

Stochastische Modellierung Aktienkurse - stylized facts

<u>Leverage Effect (Fisher Black):</u> Volatilität und Aktienrenditen sind negativ korreliert.

Volatility Clustering:

Wechselnden Phasen hoher und niedriger Volatilitäten

Modellierung Aktienkurse – Heston Modell

- Um die Risiken von Aktieninvestments angemessen zu modellieren, sollte das verwendete Modell die historischen Zeitreihen hinreichend gut beschreiben.
- Für eine Modellierung von Aktienkursen kann z.B. ein Heston Modell verwendet werden.

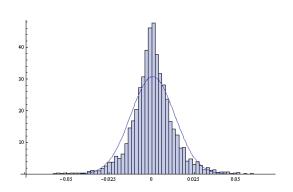
Der Aktienkurs folgt einem Prozess mit stochastischer Volatilität:

$$dS_t = \mu S_t dt + \sqrt{\nu_t} S_t dW_t^S$$

Die Volatilität selbst folgt einem Mean-Reverting-Prozess:

$$d\nu_t = \kappa(\theta - \nu_t)dt + \xi\sqrt{\nu_t}\,dW_t^{\nu}$$

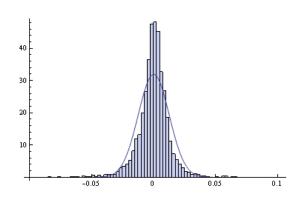
Beide Prozesse sind korreliert:

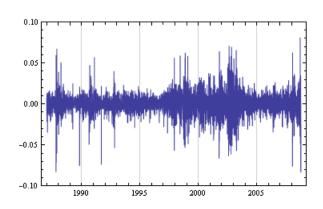

 $dW_{t}^{S},\ dW_{t}^{v}$ sind Wiener-Prozesse mit Korrelation ho

Die früher häufig verwendete geometrisch Brownsche Bewegung ist nicht im Einklang mit der Empirie und daher zumindest für die quantitative Analyse von Aktien-Hedges wenig geeignet.

Aktienmodellierung: Modell versus Empirie

Simulation täglicher Returns mit dem Heston Modell:




0.00 -0.05 -0.00 0 1000 2000 3000 4000 5000

Häufigkeitsverteilung täglicher returns

Tägliche Returns im Zeitverlauf

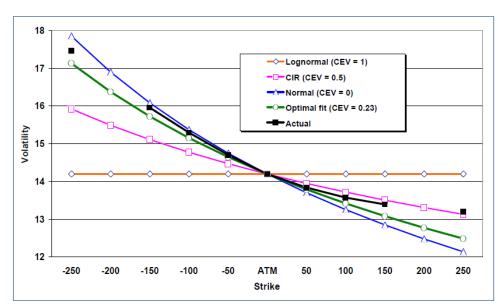
• ESTX tägliche Returns

Stochastische Modellierung der Zinsstrukturkurve

Die Modellierung der Zinsstrukturkurve ist der wichtigste Teil der stochastischen Szenarien, da das Zinsexposure in der Lebensversicherung alle anderen Risiken dominiert.

Anforderung an ein stochastisches Zinsstrukturmodell:

- Arbitragefreiheit
- Gute Übereinstimmung mit den Daten vom Kapitalmarkt (u.a. Volatility Skew für Swaptions)
- Die initiale Zinsstrukturkurve sollte getroffen werden
- Keine explodierenden Zinsen
- Möglichkeit negativer Zinsen aber keine zu stark negativen Zinsen
- Flexibilität um an eigene Zinserwartung zu kalibrieren
- Erzeugung von "risikoneutralen" Szenarien und "Real-World"-Szenarien möglich
- Analytische Handhabbarkeit

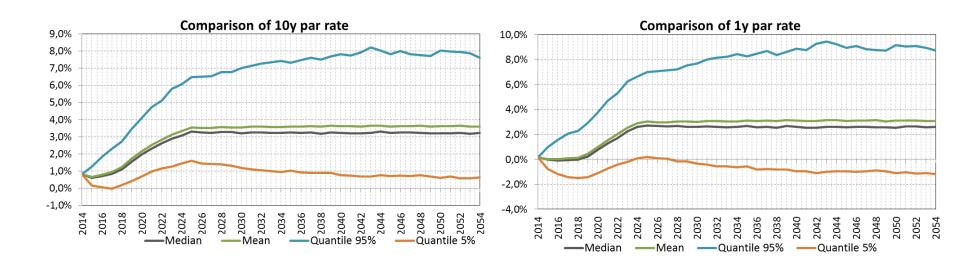


Zinsstrukturkurve – Volatility Skew

- Gütekriterium: Wie gut kann ein Zinsmodell Preise von Zinsderivaten erklären?
- Betrachtet wird das CEV (constant elasticity of variance) Zinsmodell:

$$dr = (Drift)dt + \sigma r^{\gamma} dz$$

- Das Modell beinhaltet bekannte Zinsmodelle als Spezialfall:
 - Hull-White für $\gamma = 0$
 - Black-Karasinski für γ =1
 - Cox-Ingersoll-Ross für $\gamma = 0.5$


- Die Grafik zeigt die implizite Volatilität von 5y10y Swaptions für verschiedene Strikes
- Der beste Fit ergibt sich für $\gamma = 0.23$
- Das Beispiel zeigt, dass das Black-Karasinski Modell am Markt beobachtete Preise für Swaptions nicht angemessen modelliert.

Quelle: ALEX LEVIN (2002), "INTEREST RATE MODELING: A CONSCIENTIOUS CHOICE"

Zinsstrukturkurve – CIR 2++

- OIR 2++ Zinsstrukturmodell liefert plausible Verläufe für die Zinsstruktur auch in einem Umfeld niedriger Zinsen.
- Entgegen dem originären CIR Modell produziert das Modell negative Zinsen. Im Vergleich zu Gauß-Modellen sind die negativen Zinsen jedoch stärker begrenzt.
- Das Modell ist hinreichend flexibel, um es an Zinserwartungen zu kalibrieren.

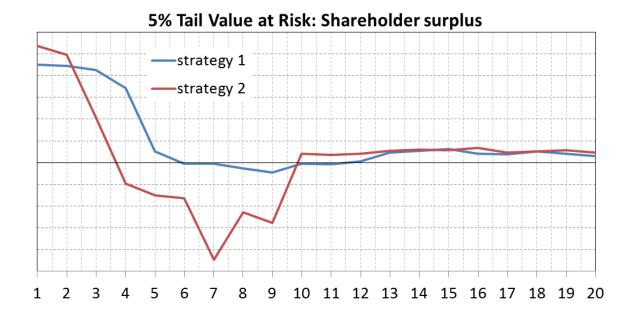
Stochastische ALM Analysen

"Real World" oder "risikoneutrale" Simulationen?

Je nach Fragestellung sind für ALM Analysen risikoneutrale bzw. Real-World-Simulationen durchzuführen.

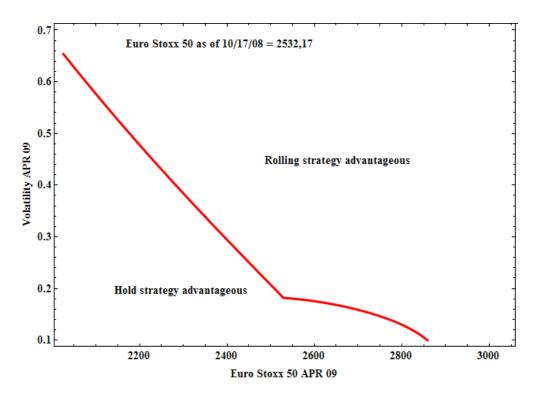
Risikoneutral

- Was ist der Einfluss einer Veränderung der Assetallokation auf den Unternehmenswert?
- Wie verändern sich die Eigenmittel unter Solvency II?
- Wie verändert sich die Solvency II Coverage Ratio?
- Wie groß ist das Duration Gap?


Real World

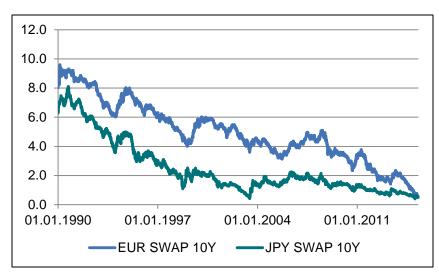
- Was ist der Einfluss einer Veränderung der Assetallokation auf die erwartete Nettoverzinsung?
- Wie verändert sich die erwartete Solvency I Coverage Ratio?
- Wie hoch ist in den nächsten 10 Jahren die Wahrscheinlichkeit für einen negativen Jahresüberschuss?
- Welches Duration-Gap sollte angestrebt werden?

Ergebnisanalyse stochastischer Simulationen (1)


- In der Grafik wird beispielhaft für eine stochastische ALM-Analyse der Tail-Value-at-Risk des Aktionärsgewinns für zwei verschiedene Asset-Strategien dargestellt.
- Da Wahrscheinlichkeiten im Fokus stehen, müssen erfolgte die Analyse unter dem Real-World-Wahrscheinlichkeitsmaß.

Ergebnisanalyse stochastischer Simulationen (2)

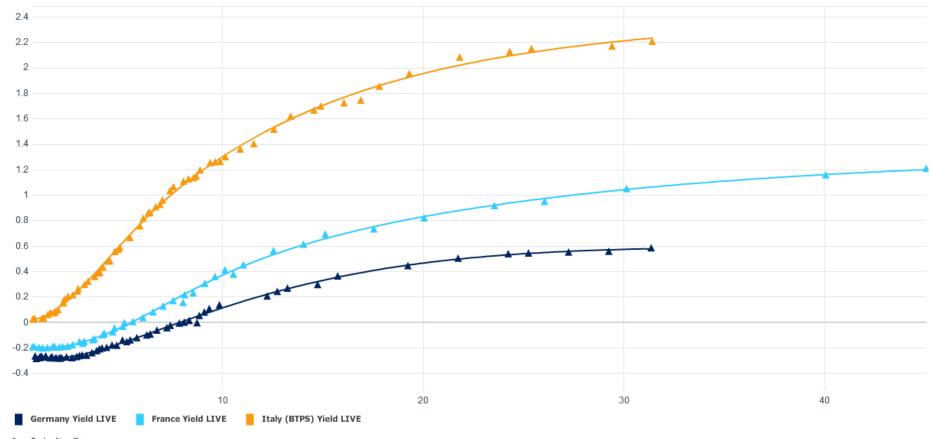
- Es ist mitunter von Vorteil, ALM-Fragestellungen mit Partialmodellen zu untersuchen.
- Das folgende Beispiel zeigt ein Teilergebnis einer Analyse zu einer Aktien-Options-Strategie.
- Das Diagramm zeigt die Indifferenzkurve für verschiedene erwartete, d. h. simulierte Aktienkurse und Volatilitäten (Real-World-Simulation). Punkte, die auf der roten Linie liegen, repräsentieren Strategien gleichen Werts.


3

Management langfristiger Zinsgarantien

Sind wir schon in einem Japan Szenario?

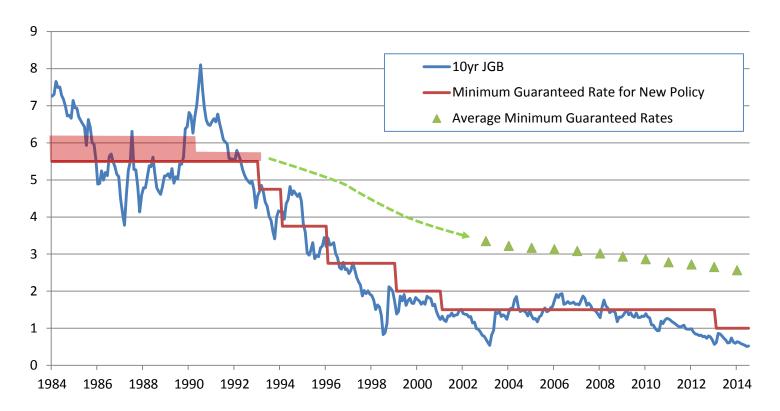
Zeitreihe Swapsätze – EUR versus JPY


- Der 10y EUR Swap liegt heute bei 0,5% und damit unter dem Satz in Japan.
- Die maximalen EUR Forward Swap Rates liegen heute nur unwesentlich über 1,0%.

	0m	3m	6m	1у	2у	Зу	4y	5у	7у	10y	15y	20y
3m	0.09	0.06	0.06	0.05	0.10	0.24	0.37	0.51	0.81	1.02	1.08	0.97
6m	0.08	0.06	0.05	0.05	0.11	0.26	0.39	0.54	0.82	1.04	1.09	0.97
1 y	0.06	0.05	0.05	0.06	0.15	0.29	0.43	0.58	0.85	1.05	1.09	0.96
2 y	0.06	0.06	0.07	0.10	0.22	0.36	0.50	0.65	0.89	1.07	1.08	0.95
3у	0.09	0.10	0.12	0.16	0.29	0.43	0.58	0.72	0.92	1.09	1.07	0.94
4y	0.14	0.16	0.18	0.23	0.36	0.51	0.64	0.77	0.96	1.09	1.06	0.93
5y	0.20	0.22	0.24	0.30	0.43	0.57	0.70	0.81	0.98	1.09	1.05	0.93
6y	0.26	0.28	0.31	0.37	0.50	0.63	0.75	0.85	1.00	1.09	1.03	0.92
7 y	0.33	0.35	0.38	0.44	0.56	0.68	0.79	0.89	1.02	1.09	1.02	0.92
8y	0.39	0.42	0.44	0.50	0.62	0.73	0.83	0.91	1.03	1.08	1.01	0.93
9у	0.45	0.47	0.50	0.55	0.66	0.77	0.86	0.93	1.03	1.08	0.99	0.93
10y	0.50	0.53	0.55	0.60	0.70	0.80	0.88	0.95	1.04	1.07	0.99	0.93
15y	0.69	0.71	0.73	0.76	0.83	0.89	0.94	0.98	1.02	1.02	0.97	0.91
20y	0.78	0.79	0.80	0.82	0.87	0.91	0.94	0.97	1.00	1.00	0.95	0.89

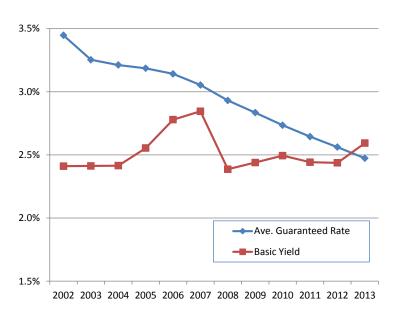
Sind wir schon in einem Japan Szenario?

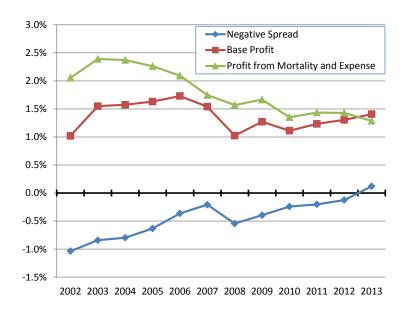
Zinsstrukturkurve Staatsanleihen – 14.04.2015



Source:Barclays Live - Chart

Vergleich mit Japan (1)

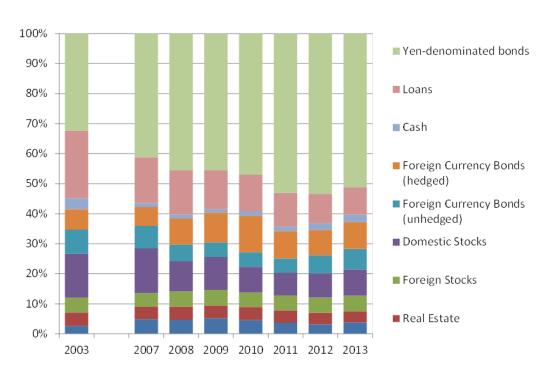

- Der japanische und der deutsche Lebensversicherungsmarkt sind sehr ähnlich.
- Langfristige, zum Teil sehr hohe Garantieverzinsungen.

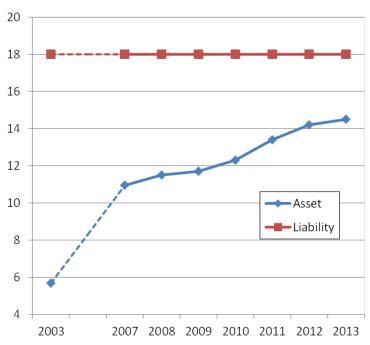


Quelle: Capitas Consulting

Vergleich mit Japan (2)

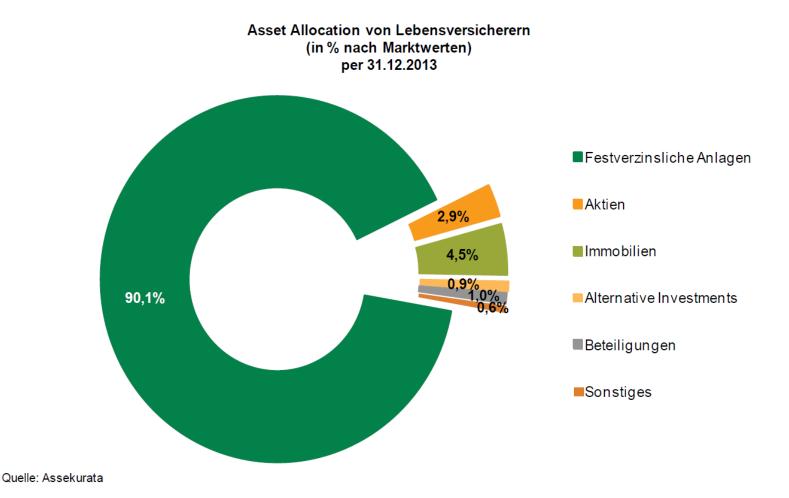
- → In Japan sind die Zinssätze seit 1990 stark gesunken. Seit ca. 2002 ist das Kapitalanlageergebnis negativ.
- → Im japanischen Markt ist es jedoch möglich, negative Kapitalanlageergebnisse mit anderen Ergebnisquellen zu verrechnen.
- Seit Einführung des LVRG ist dies auch in Deutschland möglich.




Quelle: Capitas Consulting

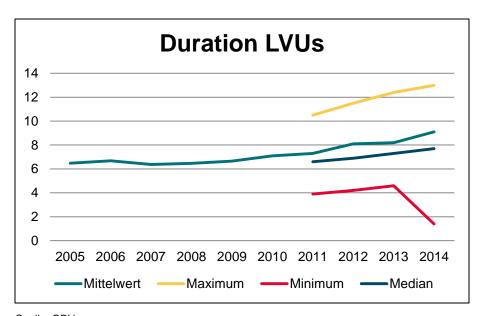
Vergleich mit Japan (3)

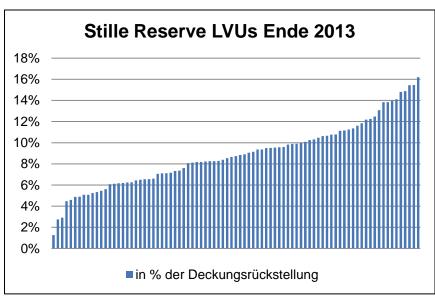
- Durationserhöhung bei Daiichi Life (Japans zweitgrößtem Lebensversicherer).
- Seit 2003 massive Erhöhung der Duration auf der Aktivseite.
- Reduzierte Aktienquote, aber immer noch auf vgl. hohem Niveau von ca. 10%.



Quelle: Capitas Consulting

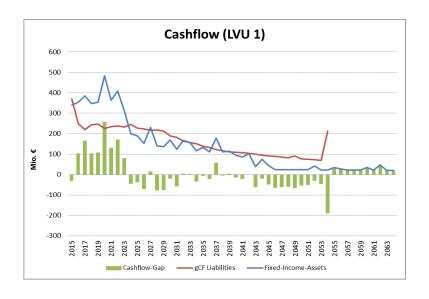
Assetallokation Lebensversicherung 2013

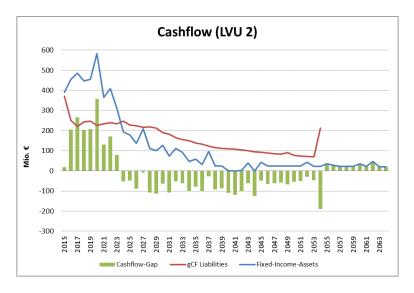

Festverzinsliche Anlagen stellen die dominante Assetklasse dar.



Heterogene ALM Strategien im dt. LV-Markt

- Die Betrachtung der Duration der deutschen Lebensversicherer in den letzten Jahren zeigt teils stark unterschiedliche Durationsstrategien (linke Grafik).
- Diese heterogenen Strategien spiegeln sich in den ebenfalls stark variierenden Reservequoten der Assets (stille Reserven / Deckungskapital) wider (rechte Grafik).





Quelle: GDV

Wert der Zinsgarantie – kleines Marktwertmodell

- Im folgenden betrachten wir zwei stilisierte LVU, die bei identischer Garantie unterschiedliche Kapitalanlage- resp. ALM-Strategien verfolgen.
- Die Garantie wird durch einen Best-Estimate-Cashflow (mit Storno, alle Annahmen 2. Ordnung) repräsentiert.
- Der Surplus enthält demzufolge auch die Risiko-, Kosten- und sonstigen Gewinne.

31.12.2009 [Tsd. €]	Marktwert	Duration	Konvexität
Fixed Income	4.408.664	9,3	163
Garantie	3.875.113	10,0	197
Surplus	533.550	0,7	34
LVU 1			

31.12.2009 [Tsd. €]	Marktwert	Duration	Konvexität
Fixed Income	4.408.664	7,4	112
Garantie	3.875.113	10,0	197
Surplus	533.550	2,6	85

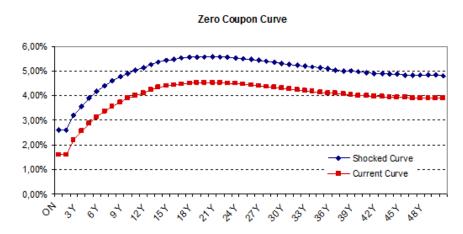
LVU 2

Management von Zinsrisiken

- - → LVU 1: 1,1 Mrd. € (ca. 25% des Marktwerts der festverzinslichen Anlagen)
 - → LVU 2: 1,6 Mrd. €.
- Ein bestehendes Wiederanlagerisiko kann u. a. durch folgende Finanzinstrumente adressiert werden:
 - → Forward Starting Receiver Swaps: Vereinbarung, zu einem zukünftigen Zeitpunkt in einen Zinsswap einzutreten
 - → Vorkäufe auf Bonds: Vereinbarung, zu einem zukünftigen Zeitpunkt ein festverzinsliches Wertpapier zu dem heute festgelegten Preis zu erwerben
 - → Receiver Swaptions:
 Erwerb des Rechts, zu einem zukünftigen
 Zeitpunkt in einen Receiver-Zinsswap einzutreten
- Im Beispiel der stilisierten LVU hat LVU 1 sein WA-Risiko durch Vorkäufe auf Bonds in Höhe von ca. 550 Mio. € reduziert.

Forwa	Forward EUR Interest Rate Swap 31 Dec 2009									
	0m	1 y	2у	Зу	4 y	5у	7у	10y	15y	20y
1 y	1,31	2,46	3,02	3,54	3,92	4,27	4,48	5,18	4,69	4,04
2у	1,88	2,74	3,28	3,73	4,09	4,38	4,65	5,12	4,67	3,96
3у	2,25	2,99	3,48	3,90	4,22	4,41	4,64	5,07	4,58	3,88
4 y	2,56	3,21	3,67	4,04	4,28	4,51	4,76	5,10	4,61	3,78
5у	2,81	3,41	3,82	4,12	4,38	4,53	4,82	5,03	4,54	3,74
6y	3,03	3,57	3,92	4,22	4,41	4,62	4,84	4,98	4,46	3,68
7у	3,22	3,68	4,03	4,27	4,51	4,68	4,88	4,94	4,39	3,62
8y	3,35	3,81	4,09	4,37	4,57	4,70	4,87	4,88	4,32	3,57
9y	3,49	3,88	4,19	4,43	4,60	4,75	4,85	4,87	4,24	3,52
10 y	3,58	3,99	4,26	4,47	4,65	4,75	4,83	4,81	4,18	3,49
15y	3,96	4,23	4,42	4,55	4,65	4,69	4,69	4,53	3,91	3,32
20y	4,06	4,27	4,39	4,47	4,51	4,53	4,47	4,28	3,71	3,21
25y	4,02	4,18	4,27	4,33	4,36	4,36	4,28	4,09	3,57	3,22
30y	3,94	4,08	4,16	4,20	4,21	4,21	4,13	3,95	3,55	3,21

Forwa	orward EUR Interest Rate Swap 31 Mar 2015									
	0m	1у	2у	Зу	4 y	5у	7у	10y	15y	20y
1 y	0,08	0,09	0,20	0,36	0,51	0,66	0,91	1,05	1,02	0,90
2y	0,08	0,14	0,28	0,44	0,59	0,73	0,94	1,06	1,01	0,89
3у	0,12	0,22	0,36	0,51	0,66	0,79	0,96	1,07	0,99	0,88
4y	0,18	0,29	0,44	0,59	0,72	0,84	0,99	1,07	0,98	0,87
5у	0,25	0,36	0,51	0,65	0,77	0,87	1,00	1,06	0,97	0,86
6y	0,32	0,44	0,57	0,70	0,81	0,90	1,02	1,06	0,96	0,86
7у	0,39	0,50	0,63	0,75	0,84	0,93	1,02	1,05	0,95	0,85
8y	0,45	0,56	0,68	0,78	0,87	0,94	1,03	1,04	0,94	0,85
9у	0,51	0,61	0,72	0,81	0,90	0,96	1,02	1,03	0,93	0,85
10y	0,56	0,65	0,75	0,84	0,91	0,97	1,02	1,02	0,92	0,85
15y	0,72	0,78	0,84	0,90	0,94	0,97	0,99	0,97	0,89	0,85
20y	0,78	0,82	0,86	0,90	0,92	0,94	0,95	0,94	0,88	0,83
25y	0,80	0,83	0,86	0,89	0,91	0,92	0,93	0,92	0,86	0,79
30y	0,80	0,83	0,86	0,88	0,90	0,91	0,92	0,90	0,82	0,74


Effektive Duration und Key Rate Duration

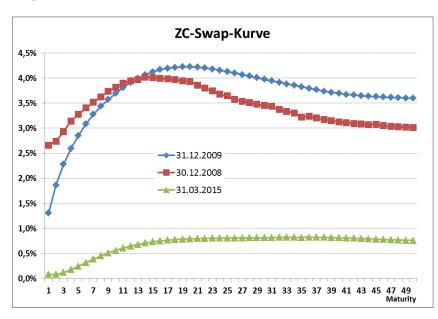
Die effektive Duration stellt eine Kennzahl zur Messung des Risikos bei Zinsänderungen dar:

$$-\frac{MW_{\Delta r}-MW_{-\Delta r}}{2*\Delta r*MW}$$

- Die Key-Rate-Duration verallgemeinert das Konzept und erlaubt es, nahezu beliebige Kurvenbewegungen zu erfassen.
- Wird die Zinskurve an den einzelnen Buckets um den gleichen Betrag verändert, so gilt:
 n

$$\sum_{i=1}^{n} KRD_i = D$$

Illustrative swap curve as of 31.12.2007 with 100 bp key rate shocks


Die Verwendung von Key-Rate-Durationen verbessert die Durationssteuerung!

Effektive Duration und Key Rate Duration

31.12.2009	Aktiva	Passiva	Gap
KR2	0,48	0,35	-0,13
KR5	1,61	0,98	-0,63
KR10	2,58	2,63	0,05
KR20	2,57	2,87	0,31
KR30	2,10	3,13	1,03
Σ KRD	9,33	9,95	0,62

LVU₁

Surplus [Tsd. €]	LVU 1	LVU 2
31.12.2009	533.550	533.550,4
30.12.2008	487.613	435.848,3
31.03.2015	316.758	-155.432,2

31.12.2009	Aktiva	Passiva	Gap
KR2	0,60	0,35	-0,26
KR5	1,86	0,98	-0,89
KR10	2,37	2,63	0,26
KR20	1,33	2,87	1,54
KR30	1,22	3,13	1,91
Σ KRD	7,38	9,95	2,57

LVU 2

- Ø Shift: -25 bps (von der blauen zur roten Kurve)
- Mit Duration und Konvexität berechneter Verlust:

⇒ LVU 1: 6 Mio. €
$$\Delta P = P\left(D\Delta r + \frac{1}{2}C\Delta r^2\right)$$

→ LVU 2: 28 Mio. €

Tatsächlicher Verlust:

→ LVU 1: 47 Mio. €

→ LVU 2: 98 Mio. €

Shift vom 31.12.2009 zum 31.03.2015: LVU 2 weist bereits einen negativen Surplus auf.

4 Fazit

Steigende Bedeutung von ALM unter Solvency II

- Die Historie in Deutschland und Japan zeigt, dass es unabdingbar ist, die Strategische Asset Allocation (SAA) nach ALM-Gesichtspunkten zu bestimmen.
- ◆ Um die Key-Rate-Duration-Gaps und das Konvexitäts-Gap zu adressieren ist der Einsatz von Derivaten notwendig.
- ◆ Insbesondere wird durch Solvency II eine konsequente ALM-Steuerung durch die Reduktion des erforderlichen Solvenzkapitals honoriert.

Vielen Dank für Ihre Aufmerksamkeit!

